If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-60x=25
We move all terms to the left:
36x^2-60x-(25)=0
a = 36; b = -60; c = -25;
Δ = b2-4ac
Δ = -602-4·36·(-25)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60\sqrt{2}}{2*36}=\frac{60-60\sqrt{2}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60\sqrt{2}}{2*36}=\frac{60+60\sqrt{2}}{72} $
| 5(4x+6)-9=121 | | 12(4x−12)=5 | | a-a+4a-a=6 | | 4x+6=12x-32 | | 5f+2(f+3)=10 | | -8v-12v=-20 | | 12x-2+110=180 | | 13x-33=18 | | 5x(x-7)=-60 | | 5+8x-2-3x=-7 | | y÷3+18=5 | | .1x-3/4=-1.75 | | 3x-423=3 | | 4x+2x-1=17 | | 18.84+5x=3.14 | | 9(2)+9x=10 | | 6y-2+5y-1+y+2=35 | | -2x+5=2x-11 | | 2(u+8)=6u+24 | | 9(2)-9x=10 | | -6u+28=-8(u-5) | | 5(5h-2)=-35 | | 1x+13=2x-8 | | 9.9t=-9.9 | | 3*10+y=80 | | 27.5x=23.25+17x | | 25+5x=130 | | 6/8=2(x+4)/3x+20 | | 2(w+8)=-2w-16 | | 4(3x-2)-x=3x-4x | | 5^x=x-2 | | 190-x=216 |